33 research outputs found

    iLeak: A Lightweight System for Detecting Inadvertent Information Leaks

    Get PDF
    Data loss incidents, where data of sensitive nature are exposed to the public, have become too frequent and have caused damages of millions of dollars to companies and other organizations. Repeatedly, information leaks occur over the Internet, and half of the time they are accidental, caused by user negligence, misconfiguration of software, or inadequate understanding of an application's functionality. This paper presents iLeak, a lightweight, modular system for detecting inadvertent information leaks. Unlike previous solutions, iLeak builds on components already present in modern computers. In particular, we employ system tracing facilities and data indexing services, and combine them in a novel way to detect data leaks. Our design consists of three components: uaudits are responsible for capturing the information that exits the system, while Inspectors use the indexing service to identify if the transmitted data belong to files that contain potentially sensitive information. The Trail Gateway handles the communication and synchronization of uaudits and Inspectors. We implemented iLeak on Mac OS X using DTrace and the Spotlight indexing service. Finally, we show that iLeak is indeed lightweight, since it only incurs 4% overhead on protected applications

    FineIBT: Fine-grain Control-flow Enforcement with Indirect Branch Tracking

    Full text link
    We present the design, implementation, and evaluation of FineIBT: a CFI enforcement mechanism that improves the precision of hardware-assisted CFI solutions, like Intel IBT and ARM BTI, by instrumenting program code to reduce the valid/allowed targets of indirect forward-edge transfers. We study the design of FineIBT on the x86-64 architecture, and implement and evaluate it on Linux and the LLVM toolchain. We designed FineIBT's instrumentation to be compact, and incur low runtime and memory overheads, and generic, so as to support a plethora of different CFI policies. Our prototype implementation incurs negligible runtime slowdowns (≈\approx0%-1.94% in SPEC CPU2017 and ≈\approx0%-1.92% in real-world applications) outperforming Clang-CFI. Lastly, we investigate the effectiveness/security and compatibility of FineIBT using the ConFIRM CFI benchmarking suite, demonstrating that our nimble instrumentation provides complete coverage in the presence of modern software features, while supporting a wide range of CFI policies (coarse- vs. fine- vs. finer-grain) with the same, predictable performance

    CloudFence: Enabling Users to Audit the Use of their Cloud-Resident Data

    Get PDF
    One of the primary concerns of users of cloud-based services and applications is the risk of unauthorized access to their private information. For the common setting in which the infrastructure provider and the online service provider are different, end users have to trust their data to both parties, although they interact solely with the service provider. This paper presents CloudFence, a framework that allows users to independently audit the treatment of their private data by third-party online services, through the intervention of the cloud provider that hosts these services. CloudFence is based on a fine-grained data flow tracking platform exposed by the cloud provider to both developers of cloud-based applications, as well as their users. Besides data auditing for end users, CloudFence allows service providers to confine the use of sensitive data in well-defined domains using data tracking at arbitrary granularity, offering additional protection against inadvertent leaks and unauthorized access. The results of our experimental evaluation with real-world applications, including an e-store platform and a cloud-based backup service, demonstrate that CloudFence requires just a few changes to existing application code, while it can detect and prevent a wide range of security breaches, ranging from data leakage attacks using SQL injection, to personal data disclosure due to missing or erroneously implemented access control checks

    A BitTorrent Module for the OMNeT++ Simulator

    No full text
    Abstract — In the past few years numerous peer to peer file sharing, or more generally content distribution, systems have been designed, implemented, and evaluated via simulations, real world measurements, and mathematical analysis. Yet, only a few of them have stood the test of time and gained wide user acceptance. BitTorrent is not just one such system; it holds the lion’s share among them. The reasons behind its success have been studied to a great extent with interesting results. Nevertheless, even though peer to peer content distribution remains one of the most active research areas, little progress has been made towards the study of the BitTorrent protocol, and its possible variations, in a fully controllable but realistic simulation environment. In this paper we describe and analyze a full featured and extensible implementation of BitTorrent for the OMNeT++ simulation environment. Moreover, since we aim to establish a realistic simulation platform, we show our enhancements to a conversion tool for a popular Internet topology generator and a churn generator based on the analysis of real BitTorrent traces. Finally we present the results from the evaluation of our prototype implementation regarding resource demands under different simulation scenarios. I
    corecore